动力系统与非线性分析研究所学术报告(韦敏志,温州理工学院)
来源:系统管理员 发布时间:2026-01-09
报告题目:Dynamics of the traveling wave solutions in a perturbed Boussinesq equation
报告人:韦敏志副教授,温州理工学院
报告时间:2026年1月10日(周六)9:00
报告地点:21-417
报告摘要:In this talk, we consider a Boussinesq equation containing weak backward diffusion, delay in the convection term, dissipation and Marangoni effect. For the Boussinesq equation with delay and weak backward diffusion, the monotonicity of ratio of Abelian integrals is analyzed by utilizing the Picard-Fuchs equations. The conditions on the existence of periodic waves and solitary waves are obtained as well as the bound of wave speed. For the Boussinesq equation with weak backward diffusion, dissipation and Marangoni effect, the corresponding Melnikov function containing three generators is given. The parametric conditions on the existence of one and two periodic waves are derived, respectively. Furthermore, the existence of solitary waves is proved under some parametric conditions.
报告人简介:韦敏志,温州理工学院,副教授,主要从事非线性水波方程行波解的研究。至今以第一作者或通讯作者在J. Differential equation、Physica D等期刊上发表SCI论文20余篇。
邀请人:动力系统与非线性分析研究所

