几何与信息流研究所学术报告(黄腾副教授,中国科学技术大学)
来源:系统管理员 发布时间:2025-12-04
报告题目:Eigenvalue Estimate for the Rough Laplacian on 1-Forms and its Applications
报告人:黄腾副教授,中国科学技术大学
报告时间:2025年12月5日(周五)11:00
报告地点:腾讯会议183-965-748
报告摘要:In this talk, we establish a geometric lower bound for the first positive eigenvalue \lambda^{(1)}_{1}of the rough Laplacian acting on 1-forms for closed 2n-dimensional Riemannian manifolds with nonvanishing Euler characteristic. In contrast to the case of functions, such a Li-Yau-type estimate does not hold in general, as evidenced by existing counterexamples. Under assumptions including a lower bound on Ricci curvature, an upper bound on diameter, and an L^{2p}-norm bound on the Riemann curvature tensor, we prove that \lambda^{(1)}_{1} is bounded below by a positive constant depending on these parameters. As applications, we derive vanishing results for the Euler characteristic under certain Ricci curvature bounds and the presence of a nonzero Killing vector field, extending classical Bochner-type theorems. This is joint work with Weiwei Wang.
报告人简介:黄腾,现任中国科学技术大学数学科学学院副教授。主要研究方向为数学物理与微分几何。研究课题包括非负截面曲率流形、特殊和乐流形以及数学规范场论等。相关成果发表在Adv. Math.、Calc. Var. PDE、Int. Math. Res. Not.、Isr. J. Math、Math.Z.、Ann. Henri Poincaré等杂志上。
邀请人:任益斌

