离散数学研究所系列学术报告
来源:系统管理员 发布时间:2025-11-23
报告题目1:Coefficientwise total positivity and Stieltjes moment properties from Riordan arrays
报告人:祝宝宣教授,江苏师范大学
报告时间:2025年11月26日(周三)9:30-12:00
报告地点:腾讯会议:402 759 342
报告摘要:Total positivity of matrices plays an important role in various branches of mathematics. In this talk, we present some criteria for the coefficientwise total positivity and the coefficientwise Hankel-total positivity from Riordan arrays. We will apply our results to a few well-known combinatorial triangles in a unifed approach.
报告人简介:祝宝宣,博士、教授、博士生导师,入选国家级青年高层次人才、江苏省青年高层次人才,及江苏省“333高层次人才工程”中青年领军人才计划。主要研究方向为解析组合学,已在《Memoirs of AMS》、《Adv. Math.》、《J. Combin. Theory Ser. A》等数学期刊上发表SCI论文50余篇;先后主持国家自然科学基金项目5项、科技部重点研发项目课题1项。曾受邀在世界华人数学家大会、德国“黑森林数学研究所”研讨会、中国数学会学术年会、中国运筹学会学术年会、全国组合数学图论大会等会议上作报告,获得江苏省青年科技奖、江苏省数学成就奖等奖项。
报告题目2:Total positivity of the matrix related to j-Eulerian numbers
报告人:牟丽丽副教授,江苏师范大学
报告时间:2025年11月26日(周三) 9:30-12:00
报告地点:腾讯会议:402 759 342
报告摘要:Define the numbers of permutations of $[n]$ which have $i$ descents and begin with $j$ to be $$A(n,i,j)=|\{\pi\in S_n:\des(\pi)=i,\ \pi(1)=j\}|.$$ Let $H_n=[h_{i,j}]_{i,j=1}^{n}$ be the $n\times n$ matrix with entries $h_{i,j}=A(n,i-1,j)$. The matrix $H_n$ is defined in geometric combinatorics as the transformation matrix for the $h$-vector under barycentric subdivision. Mu and Welker proved that this matrix is TP$_2$ (i.e., all its $2$-minors are nonnegative) and conjectured that it is, in fact, totally positive (TP). The main objective of this paper is to prove this conjecture.
报告人简介:牟丽丽,江苏师范大学数学与统计学院副教授,研究领域为组合数学。大连理工大学-麻省理工学院联合培养博士,伦敦大学学院、麻省理工学院、德国马尔堡大学等机构访问学者。主持国家自然科学基金项目2项。现任中国工业与应用数学学会-图论组合及应用专委会委员。
报告题目3:q-Supercongruences for truncated q-Appell series
报告人:王晓霞教授,上海大学
报告时间:2025年12月1日(周一) 16:00-18:00
报告地点:腾讯会议:507 952 698
报告摘要:Congruences and q-congruences for the truncated Appell series are quite finite in the literature. In this paper, we introduce the truncated q-Appell series and investigate their congruence properties.
Specifically, using two hypergeometric summations, the `creative microscoping' method formulated by Guo and Zudilin and the Chinese remainder theorem for coprime polynomials, we establish some q-supercongruences on the truncated q-Appell series $\Phi^{(1)}, \Phi^{(2)}, \Phi^{(3)}$. Moreover, in terms of the q-Zeilberger algorithm, a q-supercongruence for the truncated q-Appell series $\Phi^{(4)}$ is built, which is a new q-analogue of a conjecture of Apagodu and Zeilberger. As conclusions, we immediately obtain some congruences of the truncated Appell series.
报告人简介: 王晓霞,博士,上海大学教授。主要研究领域为组合数学和特殊函数,主要研究方向包括组合恒等式、q-级数恒等式、q-级数同余式等。截至目前,已在《Adv. Appl. Math.》、《Proc. Amer. Math. Soc.》、《Forum. Math.》等国际高水平杂志上发表SCI论文60余篇,主持国家自然科学基金项目2项、上海市自然科学基金2项。
邀请人:离散数学研究所

