离散数学研究所系列学术报告
来源:系统管理员 发布时间:2025-11-18
报告题目1:A new q-analogue of Van Hamme's (H.2) supercongruence for primes p≡1 (mod 4)
报告人:郭军伟教授,杭州师范大学
报告时间:2025年11月21日(周五)10:00-11:00
报告地点:20-308
报告摘要:Long and Ramakrishna generalized the (H.2) supercongruence of Van Hamme to the modulus $p^3$ case. Wei and Wang have given two different $q$-analogues of this supercongruence for primes $p\equiv 1\pmod{4}$. A few years ago, the author and Zudilin presented a new $q$-analogue of Van Hamme's original (H.2) supercongruence for primes $p\equiv 1\pmod{4}$. In this paper, we further extend this $q$-congruence the modulus $\Phi_n(q)^3$ case, where $\Phi_n(q)$ is the $n$-th cyclotomic polynomial in $q$. The main ingredients of our proof are the creative microscoping method, a $q$-analogue of Watson's $_3F_2$ summation, and the Chinese remainder theorem for polynomials.
报告人简介:郭军伟,现任杭州师范大学教授、博士生导师。本科毕业于南开大学数学系,后师从陈永川教授,从事代数组合与q-级数理论研究,于2004年获理学博士学位。随后赴法国里昂第一大学跟随曾江教授进行为期一年半的博士后研究,并在维也纳薛定谔国际数学物理研究所短期访问。2006年作为引进人才任华东师范大学数学系副教授;2011年破格升为教授,2012年任博士生导师。研究领域主要涉及计数组合学、q-级数、同余式等,已在SCI期刊上发表论文150余篇,其中一篇发表在《Advances in Mathematics》上。郭军伟教授先后主持并完成了国家自然科学青年基金1项、面上基金2项,江苏省自然科学基金面上项目1项,以及上海市科委青年科技启明星计划1项。
报告题目2:The Tammes Problem in R^n and Linear Programming Method
报告人:连艳陆讲师,杭州师范大学
报告时间:2025年11月21日(周五)14:00-15:00
报告地点:20-308
报告摘要:The Tammes problem delves into the optimal arrangement of N points on the surface of the n-dimensional unit sphere, aiming to maximize the minimum distance between any two points. In this work, we articulate the sufficient conditions requisite for attaining the optimal value of the Tammes problem for arbitrary n, N \in N^{+}, employing the linear programming framework pioneered by Delsarte et al. Furthermore, we showcase several illustrative examples across various dimensions n and select values of N that yield optimal configurations. The findings illuminate the intricate structure of optimal point distributions on spheres, thereby enriching the existing body of research in this domain. This talk is based on joint work with Qun Mo and Yu Xia.
报告人简介:连艳陆,现任杭州师范大学讲师,主要研究方向为离散几何及数的几何。目前,作为负责人承担浙江省自然科学基金探索青年项目“若干覆盖问题在格理论中的研究”。
报告题目3:The homogeneous little q-Jacobi polynomials
报告人:曹健教授,杭州师范大学
报告时间:2025年11月21日(周五)15:00-16:00
报告地点:20-308
报告摘要:Motivated by the $q$-operational equation for Rogers--Szeg\{o} polynomials [Sci. China Math. {\bf 66}(2023), no. 6, 1199--1216.], it is natural to ask whether some general $q$-polynomials exist, which are solutions of certain $q$-operational equations, $q$-difference equations and $q$-partial differential equations. In this paper, based on the importance of little $q$-Jacobi polynomials, we define two homogeneous little $q$-Jacobi polynomials and search their corresponding $q$-operational equations, $q$-difference equations and $q$-partial differential equations by the technique of noncommutative $q$-binomial theorem and recurrence relations. In addition, we deduce some generating functions for homogeneous little $q$-Jacobi polynomials by methods of $q$-operational equation, $q$-difference equation and $q$-partial differential equation. Moreover, we consider recurrence relations for homogeneous little $q$-Jacobi polynomials.
报告人简介:曹健,杭州师范大学教授、硕士生导师,从事组合数学与特殊函数领域的研究。已在本领域重要学术刊物(如《Stud. Appl. Math.》、《Adv. Appl. Math.》、《Math. Nachr.》、《Bull. Sci. Math.》等)上以独立或通讯作者身份发表SCI论文40余篇,并主持国家自然科学基金及浙江省自然科学基金在内的多项科研项目。入选杭州市属高校中青年学术带头人、杭州市“131”人才等多项人才计划。曾多次在中国数学会学术年会、全国组合数学与图论会议,以及英国肯特大学、伦敦大学学院等机构举办的学术会议上作报告。
邀请人:王二小

