现代分析及其应用研究所系列学术报告(Nadine Grosse,德国弗莱堡大学)
来源:系统管理员 发布时间:2025-10-30
报告题目1:About the spinorial Yamabe equation
报告人:Nadine Grosse,德国弗莱堡大学
报告时间:2025年11月10日(周一)14:00
报告地点:20-200
报告摘要:The spinorial Yamabe equation is a nonlinear equation for the Dirac operator that not just has structural similarities with the Yamabe equation but also the corresponding spinorial Yamabe constant is linked to the Yamabe inequality via an Hijazi-type inequality. In this talk we give an overview about the motivation to study this equation, results and open problems.
报告题目2:On local boundary conditions for Dirac-type operators
报告人:Nadine Grosse,德国弗莱堡大学
报告时间:2025年11月11日(周二)14:00
报告地点:20-200
报告摘要:We discuss smooth local boundary conditions for Dirac-type operators, giving existence and non-existence results for local self-adjoint boundary conditions and discuss concrete parametrizations of the space of all those conditions in low dimensions. We also give conditions when the boundary conditions are elliptic/regular/Shapiro-Lopatinski (i.e. in particular giving rise to self-adjoint Dirac operators with domain in H^1). This is joint work with Hanne van den Bosch (Universidad de Chile) and Alejandro Uribe (University of Michigan).
报告人简介:Nadine Grosse,德国弗莱堡大学教授,于德国莱比锡马克斯·普朗克数学科学研究所获博士学位,主要研究方向为几何分析、微分几何、旋量几何、共形几何、谱理论,在C. R. Math. Acad. Sci. Paris、Proc.Lond.Math.Soc.、Calc.Var. PDEs、Comm.Part.Diff.Eq.、Ann.Glob.Anal.Geom.等重要国际期刊上发表多篇论文。
邀请人:徐甜

