当前位置: 首页  科学研究  学术活动

现代分析及其应用研究所系列学术报告(Nadine Grosse,德国弗莱堡大学)

来源:系统管理员 发布时间:2025-10-30

报告题目1About the spinorial Yamabe equation

报告人:Nadine Grosse德国弗莱堡大学

报告时间:20251110日(周一)14:00 

报告地点:20-200 

报告摘要:The spinorial Yamabe equation is a nonlinear equation for the Dirac operator that not just has structural similarities with the Yamabe equation but also the corresponding spinorial Yamabe constant is linked to the Yamabe inequality via an Hijazi-type inequality. In this talk we give an overview about the motivation to study this equation, results and open problems.


报告题目2On local boundary conditions for Dirac-type operators

报告人:Nadine Grosse德国弗莱堡大学

报告时间:20251111日(周二)14:00 

报告地点:20-200 

报告摘要:We discuss smooth local boundary conditions for Dirac-type operators, giving existence and non-existence results for local self-adjoint boundary conditions and discuss concrete parametrizations of the space of all those conditions in low dimensions. We also give conditions when the boundary conditions are elliptic/regular/Shapiro-Lopatinski (i.e. in particular giving rise to self-adjoint Dirac operators with domain in H^1). This is joint work with Hanne van den Bosch (Universidad de Chile) and Alejandro Uribe (University of Michigan).


报告人简介:Nadine Grosse德国弗莱堡大学教授,于德国莱比锡马克斯·普朗克数学科学研究所获博士学位,主要研究方向为几何分析、微分几何、旋量几何、共形几何、谱理论,在C. R. Math. Acad. Sci. Paris、Proc.Lond.Math.Soc.、Calc.Var. PDEs、Comm.Part.Diff.Eq.、Ann.Glob.Anal.Geom.等重要国际期刊上发表多篇论文。

邀请人:徐甜