当前位置: 首页  科学研究  学术活动

离散数学研究所系列学术报告

来源:系统管理员 发布时间:2025-10-29

报告题目1On high discrepancy $1$-factorizations of complete graphs

报告人:艾江东副教授,南开大学

报告时间:20251031日(周五)13:00-14:00

报告地点:腾讯会议:144 265 272

报告摘要:We proved that for every sufficiently large $n$, the complete graph $K_{2n}$ with an arbitrary edge signing $\sigma: E(K_{2n}) \to \{-1, +1\}$ admits a high discrepancy $1$-factor decomposition. That is, there exists a universal constant $c > 0$ such that every edge-signed $K_{2n}$ has a perfect matching decomposition $\{\psi_1, \ldots, \psi_{2n-1}\}$, where for each perfect matching $\psi_i$, the discrepancy $\lvert \frac{1}{n} \sum_{e\in E(\psi_i)} \sigma(e) \rvert$ is at least $c$.

报告人简介:艾江东,南开大学数学科学学院,入选国家级青年人才。研究兴趣是图论及组合优化,主要是对有向图理论的研究,包括有向图结构的分析和刻画、一般图结构的谱极值条件等等。发表论文20余篇,研究成果发表在SIAM J. Discrete Math, J. Graph Theory 等杂志。

 

报告题目2Extremal problems involving counting vertex subsets with special properties

报告人:涂建华教授,北京工商大学

报告时间:20251031日(周五)15:00-17:00

报告地点:腾讯会议:144 265 272

报告摘要:The study of determining the maximum and minimum number of vertex subsets with special properties within certain graph classes has been a captivating focus in extremal graph theory over recent decades. In this talk, I will provide an overview of our recent research, which involves determining the maximum and minimum numbers of maximal independent sets, maximum dissociation sets, maximal dissociation sets, and all dissociation sets.

报告人简介:涂建华,北京工商大学数学与统计学院教授,北京市青年教学名师,北京市优质本科课程《数学分析》负责人。主要从事图论和组合优化的研究,在J. Graph Theory等国际期刊发表SCI论文40余篇。

 

报告题目3Survey on Characterization of Diagnosability based on Distinct Fault Patterns

报告人:周书明教授,福建师范大学

报告时间:20251031日(周五)15:00-17:00

报告地点:腾讯会议:144 265 272

报告摘要:In the design and optimization of multiprocessor systems, one of the most fundamental concerns is the system reliability and self-diagnosis capability, which can be usually characterized by connectivity and diagnosability of the underlying network topologies of multiprocessor systems. Unfortunately, the traditional connectivity or diagnosability is limited by the minimum degree of the network. However, the qualitative and quantitative characterization of reliability relies on the choice of an appropriate mathematical modeling and assumptions consistent with the actual situation. Thus, a great deal of conditional connectivities and conditional diagnosabilities under distinct fault patterns have been proposed subsequently. In this survey, we will elaborate on some characterizations of conditional diagnosabilities in terms of conditional connectivites.

报告人简介:周书明( Senior MemberIEEE)2005年毕业于厦门大学数学科学学院,获博士学位。现为福建师范大学数学与统计学院教授、博士生导师,分析数学及应用教育部重点实验室主要成员。校宝琛计划特聘教授(2021-2023),2021年被评为校优秀研究生指导教师2022入选福建省高层次“C类人才2025入选福建省高层次“B类人才。中国科学技术大学访问学者(2010.09-2011.08),南洋理工大学访问学者(2023.02-2024.01)。中国计算机学会理论计算机科学专业委员会执行专委、容错计算专业委员会执行专委。2016年获第十二届福建省自然科学优秀学术论文一等奖。2021年获第三届国际网络空间安全科学学术会议最佳论文奖。主持完成国家自然科学基金面上项目2项及多项福建省自然科学基金面上项目。主要从事离散数学、图论与网络优化、故障诊断及检测、容错计算及基于复杂网络和社交网络的大数据分析等方面的研究。相继在IEEE/ACM TON, IEEE TC, IEEE TPDS, IEEE TNSE, IEEE TR, INS, JPDC, TCS, DAM, Physica A等期刊上发表论文100余篇。目前担任国际学术期刊编辑(Editor): International Journal of Parallel, Emergent and Distributed Systems, International Journal of Computer Mathematics: Computer Systems Theory


邀请人:金泽民