无穷维动力系统和偏微分方程研究所系列学术报告
来源:系统管理员 发布时间:2025-09-22
报告题目1:Liouville Type Theorems for Fully Nonlinear Elliptic Equations
报告人:李东升教授,西安交通大学
报告时间:2025年9月26日(周五)14:30-17:30
报告地点:20-200
报告摘要:In this talk, we will establish several Liouville type theorems for general fully nonlinear elliptic equations, where the domains are the whole spaces or half spaces and the righthand sides may contain periodic data. We will use our general theorems to some concrete equations including Monge-Ampere equations, Special Lagrange equations, etc.
报告人简介:李东升,西安交通大学数学系教授,博士生导师。长期从事偏微分方程正则性理论方面的研究,在解的边界正则性,解的刚性定理,以及解的L^p估计方面取得成果。目前,发表科研论文80余篇;主持7项国家自然科学基金项目;是陕西省优秀博士论文指导教师获得者;获教育部科技进步二等奖一项,陕西省科技进步二等奖两项。
报告题目2:Stability of Logarithmically Sensitive Chemotaxis Model under Dynamic Boundary Conditions
报告人:赵昆教授,哈尔滨工程大学
报告时间:2025年9月26日(周五)14:30-17:30
报告地点:20-200
报告摘要:In contrast to random diffusion without orientation, chemotaxis is the biased movement of biological entities toward the region that contains higher concentration of beneficial or lower concentration of unfavorable chemicals. The former often refers to as chemo-attraction and the latter as chemo-repulsion. Chemotaxis has been advocated as a leading mechanism to account for the morphogenesis and self-organization of a variety of biological coherent structures such as aggregates, fruiting bodies, clusters, spirals, spots, rings, labyrinthine patterns and stripes. This talk is built on a sequence of recent results on the qualitative analysis of a system of hyperbolic-parabolic balance laws arising from a chemotaxis model with logarithmic sensitivity. Specifically, we focus on the long-time asymptotic behavior of classical solutions to the PDE with naturally prepared initial data and subject to evolutionary boundary conditions of Dirichlet and Neumann type. Some open problems will also be discussed.
报告人简介:赵昆,哈尔滨工程大学教授,中国科学技术大学本科、硕士,美国佐治亚理工学院博士,美国俄亥俄州立大学数学生物学研究所博士后,曾任美国爱荷华大学数学系访问助理教授,美国杜兰大学数学系助理教授及终身副教授。主要从事生物数学、流体力学、数学物理等领域中非线性偏微分方程的定性和定量分析研究。
报告题目3:Bi-Lipschitz embeddings of attractors defined on multi-dimensional bounded domains
报告人:孙春友教授,东华大学
报告时间:2025年9月26日(周五)14:30-17:30
报告地点:20-200
报告摘要:It is well-known that the finite dimensional reduction can be realized via by constructing bi-Lipschitz Man\'e projections or inertial manifolds for dissipative PDEs, and the known applications were mainly restricted to the PDEs defined on periodic domains with dimension two or three, and usually no longer valid for case such as the space dimensions $d\geq 4$ or general bounded domains. This talk will report our recent attampt in this direction, especially, for some special case, we provide a criterion which can deal with the case of multi-dimensional ($d\geq 4$) general bounded domains (aperiodic). As an application, we prove the existence of bi-Lipschitz Ma\~{n}\'e projections for a class of fractional Cahn-Hillard equations with Kirchhoff-type nonlinearity. This is a joint work with Dr Xinhua Li and Ziqi Niu.
报告人简介:孙春友,东华大学教授、博士生导师。主要从事无穷维动力系统、非线性分析方面的研究工作。相关工作发表在《 Izv. Math.》、《Math. Ann.》、《Trans. Amer. Math. Soc. 》、《 Indiana Univ. Math. J. 》、《SIAM J. Math. Anal.》、《 J. Differential Equations》,《SIAM J. Applied Dynamical Systems》,《Pro. Royal Society of Edinburgh》等学术期刊上。
报告题目4:Blow-up in a flux-limited chemotaxis system
报告人:穆春来教授,重庆大学
报告时间:2025年9月26日(周五)14:30-17:30
报告地点:20-200
报告摘要:This talk investigates the impact of flux limitation on the solution of a chemotaxis model with nonlinear diffusion. Under appropriate conditions, it is shown that the solution blows up in finite time. This is a joint work with Xinyu Tu and Minghua Zhang.
报告人简介:穆春来,教授,重庆大学数学与统计学院院长,从事非线性偏微分方程和生物数学研究;获教育部自然科学奖二等奖、重庆自然科学奖二等奖、国家教学成果二等奖;教育部“非线性分析数学与应用”重点实验室、重庆“分析数学与应用”重点实验室、国家一流专业“数学与应用数学”、国家一流课程线性代数”、重庆“数学”一级重点学科等负责人。承担国家自科、重庆自科重点等基金,在M3AS、JDE、Nonlinearity、Studies Appl. Math.、JNS、JDDE、EJAM、中国科学等权威期刊发表论文多篇。
邀请人:无穷维动力系统和偏微分方程研究所