动力系统与非线性分析研究所系列学术报告
来源:系统管理员 发布时间:2025-09-08
报告题目1:Traveling Wave Solutions of Some Coupling Nonlinear Wave Models : Dynamical System Approach
报告人:李继彬教授,华侨大学
报告时间:2025年9月16日(周二)8:00-9:00
报告地点:20-306
报告摘要:本报告介绍关于两类耦合非线性波方程行波解的动力学性质。纠正了美国数学家的研究错误。
报告人简介:李继彬,教授,博士生导师,国家级突出贡献专家。主要从事动力系统与非线性微分方程等领域的研究。曾主持承担国家自然科学基金重点项目和面上科研项目等10余项,发表论文250余篇,出版中英文专著10部,主编教材2部、出版科普书2本。三十余年培养硕士和博士研究生70余人。曾获国家优秀教学成果二等奖(排名第一),科研成果曾分别获云南省和浙江省科学技术一等奖(排名第一)。
报告题目2:Inhomogeneous Picard-Fuchs equations of Abelian integrals in piecewise smooth near-Hamiltonian systems
报告人:田云教授,上海师范大学
报告时间:2025年9月16日(周二)9:00-10:00
报告地点:20-306
报告摘要:In this talk, we shall study inhomogeneous Picard-Fuchs equations for Abelian integrals $I_{i,j}^+(h)$ , where $I_{i,j}^+(h)$ is an integral along orbital arcs defined by polynomials $\frac{1}{2}y^2 + F(x)=h$. Moreover, we discuss the method of using Picard-Fuchs equations to recursively compute the asymptotic expansions of genearating functions of Abelian integrals near a homoclinic loop. As an application, we derive the maximum number of isolated zeros of Melnikov functions near a nilpotent saddle homoclinic loop for piecewise polynomials perturbations with the inclination $\theta$ of the separation line as a free parameter.
报告人简介:田云,上海师范大学数理学院教授,博士生导师,博士毕业于加拿大西安大略大学应用数学系,从事常微分方程定性理论、计算机符号计算和传染病模型等方向的研究,特别关注弱化的Hilbert第16问题、同宿异宿极限环分支和规范型的符号计算等相关问题。近年来,在JDE、Commun. Nonl. Sci. Numer. Simul和Nonlinear Anal. RWA等本领域主流期刊发表学术三十余篇论文。
报告题目3:Markus-Yamabe conjecture for planar piecewise linear refracting systems
报告人:李时敏教授,杭州师范大学
报告时间:2025年9月16日(周二)10:00-11:00
报告地点:20-306
报告摘要:The Markus–Yamabe conjecture states that if a differential system has a unique equilibrium point and all eigenvalues of the Jacobian matrix of have negative real parts, then the equilibrium point is globally asymptotically stable. It has been shown that the Markus–Yamabe conjecture holds for n= 2, but it fails for n>2. Recently, the conjecture has been extended to piecewise linear systems. Previous literature indicates that the Markus–Yamabe conjecture holds for planar piecewise linear continuous systems but fails for piecewise linear discontinuous systems.
In this talk, we focus on planar piecewise linear refracting systems, which are a type of discontinuous system without sliding. Our results reveal that the Markus–Yamabe conjecture holds for planar piecewise linear refracting systems with two zones separated by a straight line, but fails for planar piecewise linear refracting systems with three zones separated by two parallel straight lines.
报告人简介:李时敏,杭州师范大学教授,理学博士,博士生导师。研究方向为微分方程理论及其应用。在中国科学-数学,J. Differential Equations, J. Nonlinear Science, Physica D等国内外学术期刊上发表论文30余篇,研究成果获广东省自然科学奖二等奖。先后主持国家自然科学基金3项,广东省自然科学基金2项。
报告题目4:Bifurcation of limit cycles near homoclinic loop with a nilpotent saddle in a sylinder
报告人:孙宪波教授,杭州师范大学
报告时间:2025年9月16日(周二)11:00-12:00
报告地点:20-306
报告摘要:We study homoclinic bifurcation in near-Hamiltonian systems with a nilpotent saddle in a sylinder. We derive the expansions of the first order Melnikov function and consider the bifurcation problem of limit cycles near a double homoclinic loop. As an application, we discuss the number of limit cycles of a class of cylinder pendulum-like systems.
报告人简介:孙宪波,杭州师范大学数学学院教授,理学博士,博士生导师。在Journal of Differential Equations, Physica D, Chaos, Journal of Symbolic Computation, Bulletin des Science Mathematique,《中国科学》等发表学术论文40余篇;主持国家自然科学基金4项(面上1项,青年1项,地区2项),主持省部级项目3项,杭州市人才项目1项(西湖明珠);杭州市C类人才。
报告题目5:Hopf bifurcation of three-dimensional systems with parameters
报告人:可爱博士,东华大学
报告时间:2025年9月16日(周二)14:00-15:00
报告地点:21-425
报告摘要:In this talk, we discuss Hopf bifurcation of limit cycles for a class of three-dimensional systems with multiple parameters. We show two methods to determine the number of limit cycles near the origin. Then we also provide two application examples.
报告人简介:可爱,东华大学青年研究员,主要从事微分方程与动力系统的极限环分支研究。在Journal of Differential Equations、Qualitative Theory of Dynamical Systems、Physica D等国际SCI期刊发表论文多篇,主持国家自然科学青年基金项目一项(2024年1月—2026年12月)。
邀请人:动力系统与非线性分析研究所