几何研讨会报告
来源:系统管理员 发布时间:2025-07-15
报告题目1:A characterization of uniruled Kaehler manifolds
报告人:欧文浩,中国科学院
报告时间:2025年7月21日(周一)8:30-9:30
报告地点:20-200
报告摘要:We adapt Bost's algebraicity characterization to the situation of a germ in a compact Kaehler manifold. As a consequence, we extend the algebraic integrability criteria of Campana-Paun and of Druel to foliations on compact Kaehler manifolds. As an application, we prove that a compact Kaehler manifold is uniruled if and only if its canonical line bundle is not pseudoeffective.
报告人简介:欧文浩,中国科学院数学与系统科学研究院副研究员,2009至2013年就读于巴黎高师、巴黎七大;2015年在格勒诺布尔阿尔卑斯大学获博士学位;此后在波恩大学、加州大学洛杉矶分校访问学习,并于2019年加入中国科学院。欧文浩的研究方向为复几何中的正性和流形分类问题。他的主要工作包括,证明了三维凯勒流形的丰沛猜想、带奇点的Bogomolov不等式和凯勒流形的单直纹判断法则等。
报告题目2:Isotropic points in the Balmer spectrum of stable motivic homotopy categories
报告人:杜鹏,浙江师范大学
报告时间:2025年7月21日(周一)9:45-10:45
报告地点:20-200
报告摘要:I will discuss the tensor-triangulated geometry of the stable motivic homotopy category SH(k) and a big family of the so-called isotropic realisation functors, parameterized by the choices of a Morava K-theory and an extension of the base field k (of characteristic zero). By studying the target category of such an isotropic realisation functor, we are able to construct the so-called isotropic Morava points of the Balmer spectrum Spc(SH(k)^c) of the stable motivic homotopy category SH(k). Based on joint work with A. Vishik.
报告题目3:On Hermitian manifolds with constant curvature
报告人:汤凯,浙江师范大学
报告时间:2025年7月21日(周一)11:00-12:00
报告地点:20-200
报告摘要:A long-standing conjecture predicts that a compact Hermitian manifold with constant holomorphic sectional curvatur is Kaehler if λ≠0 and Chern-flat if λ=0. We will discuss the validity of this conjecture under additional conditions. Similarly, we also study the constant mixed curvature Ca,b=λ. We prove that if a compact Hermitian surface with constant mixed curvature λ, then the Hermitian metric must be Kaehler unless λ=0 and 2a+b=0.
邀请人:倪磊