离散数学研究所学术报告(卢安晞研究员,同济大学)
来源:系统管理员 发布时间:2025-05-30
报告题目:Minors of non-hamiltonian graphs
报告人:卢安晞研究员,同济大学
报告时间:2025年5月30日(周五)15:00-16:00
报告地点:20-308
报告摘要:A seminal result of Tutte asserts that every 4-connected planar graph is hamiltonian. By Wagner's theorem, Tutte's result can be restated as: every 4-connected graph with no $K_{3,3}$ minor is hamiltonian. In 2018, Ding and Marshall posed the problem of characterizing the minor-minimal 3-connected non-hamiltonian graphs. They conjectured that every 3-connected non-hamiltonian graph contains a minor of $K_{3,4}$, $\mathfrak{Q}^+$, or the Herschel graph, where $\mathfrak{Q}^+$ is obtained from the cube by adding a new vertex and connecting it to three vertices that share a common neighbor in the cube. We recently resolved this conjecture along with some related problems. In this talk, we review the background and discuss the proof.
报告人简介:卢安晞,同济大学,特聘研究员。本科毕业于香港中文大学数学专业,硕士毕业于德国波恩大学数学专业,博士毕业于德国伊尔梅瑙工业大学数学专业。自2019 年起,先后在中国科学技术大学、厦门大学、加拿大蒙特利尔大学、日本横滨国立大学从事博士后研究。在J. Combin. Theory Ser. B,SIAM J. Discrete Math.,J. Graph Theory,European J. Combin.等组合图论领域重要杂志上发表论文多篇。
邀请人:朱绪鼎