离散数学研究所学术报告(Seog-Jin Kim,韩国建国大学)
来源:系统管理员 发布时间:2025-04-07
报告题目:List coloring of the square of subcubic planar graphs
报告人:Seog-Jin Kim,韩国建国大学
报告时间:2025年4月10日(周四)15:00-16:00
报告地点:21-417
报告摘要:The square of a graph G, denoted G^2, has the same vertex set as G and has an edge between two vertices if the distance between them in G is at most 2. Thomassen (2018) proved that \chi(G^2) \leq 7 if G is a subcubic planar graph. A natural question is whether \chi_{\ell}(G^2) \leq 7 or not if G is a subcubic planar graph. Cranston and Kim (2008) showed that \chi_{\ell}(G^2) \leq 7 if G$ is a subcubic planar graph of girth at least 7. Recently, Kim and Lian (2024) proved that \chi_{\ell}(G^2) \leq 7 if G is a subcubic planar graph of girth at least 6. In this talk, we will explain the idea of the proofs of Kim and Lian's result and introduce problems which are related with this topic. This talk is based joint work with Xiaopan Lian (Nankai University)
报告人简介:Seog-Jin Kim,韩国建国大学(Konkuk Univeristy)教授,2003年获美国伊利诺伊大学香槟分校博士学位,导师为Douglas Brent West,主要研究领域是图的染色和图的结构。他在J. Combin. Theory Ser. B,J. Graph Theory,Electron. J. Combin. 等杂志发表论文40余篇。
邀请人:朱绪鼎