数学研究所、离散数学系学术报告(Ping Wang,St. Francis Xavier University)
来源:系统管理员 发布时间:2024-12-19
报告题目:A polynomial algorithm on strong edge coloring of K4-minor free graphs
报告人:Ping Wang Professor,St. Francis Xavier University
报告时间:2024年12月24日(周二)18:30-19:30
报告地点:腾讯会议:519-747-751
报告摘要:The strong chromatic index χs’(G) of a graph G is the smallest integer k such that G has a proper edge k-coloring with the condition that any two edges at distance at most 2 receive distinct colors. It is known that χs’(G)≤3∆-2 for any K4-minor free graph G with ∆≥3 where ∆ denotes the maximum degree of G. We give a polynomial algorithm of order O(|E(G)|(n2∆2+2n2+16∆)) to generate a strong edge coloring of a K4-minor free graph with 3∆-2 colors where ∆≥3.
报告人简介:Ping Wang,现为加拿大圣弗朗西斯泽维尔大学数学与统计学学院教授、博士生导师。主要从事图论以及算法应用方面的研究,包括图的染色、极值图论、算法应用、数据挖掘与金融数学等。至今在Journal of Graph Theory、Graph and Combinatoric、Discrete Mathematics、Advances in Mathematics、Applied Economics、《中国科学》(英文版)等国际国内著名刊物发表系列论文,主持参与中国自然科学基金(NSFC)与加拿大自然科学与工程研究基金(NSERC)项目等。
邀请人:王维凡