现代分析及其应用数学研究所学术报告(辛周平教授,香港中文大学)
来源:系统管理员 发布时间:2024-12-05
报告题目1:Part one: On the Prandtl's Boundary Layer Theory for Steady Sink-Type Tlows(I)
报告人:辛周平教授,香港中文大学
会议时间:2024年12月8日(周日)9:30-11:00
会议地点:20-306(腾讯会议:919-403-640)
报告题目2:Part two: On the Prandtl's Boundary Layer Theory for Steady Sink-Type Tlows(II)
报告人:辛周平教授,香港中文大学
会议时间:2024年12月8日(周日)14:00-15:30
会议地点:20-306(腾讯会议:919-403-640)
摘要:In this talk, I will present some results on the large Reynolds number limits and asymptotic behaviors of solutions to the steady incompressible Navier-Stokes equations in two-dimensional infinitely long convergent nozzles. The main results show that the Prandtl's laminar boundary layer theory can be rigorously established and the sink-type Euler flow superposed with a self-similar Prandtl's boundary layer flow is shown to be uniformly structurally stable as long as the viscous flow has a given negative mass flus and the boundaries of the nozzle satisfy a curvature decreasing condition. Furthermore, the asymptotic behaviors of the solutions at both the vertex and infinity can be determined uniquely which plays a key role in the stability analysis. Some of key ideas in the theory will be discussed. This talk is based on a joint work with Dr.Chen Gao.
邀请人:非线性分析与PDE团队