当前位置: 首页  科学研究  学术活动

现代分析及其应用数学研究所学术报告(黄得,北京大学)

来源:系统管理员 发布时间:2024-11-21

报告题目:On self-similar finite-time blowups of the incompressible Euler equations and related models.

报告人:黄得北京大学

报告时间:2024年11月23日(周六)10:00-11:00

报告地点:20-200

报告摘要:It remains an open problem whether the 3D incompressible Euler equations can develop finite-time singularity from smooth initial data in the whole space. In this talk, I will review some most recent results on finite-time blowups with self-similar features, divided into three parts. In the first part, I will talk about the dynamic rescaling method for establishing asymptotically self-similar finite-time blowup with rigorous computer-assisted proof. In the second part, I will introduce the constructions of exact self-similar blowup solutions for some simple models of the 3D Euler equations based on the fixed-point method. In the last part, I will talk about recent findings on potential self-similar finite-time blowups of the 3D Euler equations with multi-scale features, which are closely related to traveling wave solutions and may provide a new approach towards Euler singularity.

报告人简介:黄得,北京大学数学科学学院助理教授、研究员。2015年获北京大学学士学位、物理双学位,2020年获美国加州理工学院应用数学博士学位。主要研究领域是流体偏微分方程和随机矩阵理论,着重于NavierStokes方程和Euler方程的爆破问题及涉及随机矩阵算法的应用问题。

邀请人:潜陈印