现代分析及其应用数学研究所(童嘉骏,北京大学北京国际数学研究中心)
来源:系统管理员 发布时间:2024-11-14
报告题目:Steady Contiguous Vortex-Patch Dipole Solutions of the 2D Incompressible Euler Equation
报告人:童嘉骏,北京大学北京国际数学研究中心
报告时间:2024年11月15日(周五)10:00-11:00
报告地点:20-200
报告摘要:It is of great mathematical and physical interest to study traveling wave solutions to the 2D incompressible Euler equation in the form of a touching pair of symmetric vortex patches with opposite signs. Such a solution was numerically illustrated by Sadovskii in 1971, but its rigorous existence was left as an open problem. In this talk, we will rigorously construct such a solution by a novel fixed-point approach that determines the patch boundary as a fixed point of a nonlinear map. Smoothness and other properties of the patch boundary will also be characterized. This is based on a joint work with De Huang.
报告人简介:童嘉骏,北京大学北京国际数学研究中心助理教授,研究方向为偏微分方程与应用分析,特别是流固耦合问题、流体方程、演化自由边界问题等,已在Comm. Pure Appl. Math., Ann. PDE., Comm. Math. Phys., Arch. Ration. Mech. Anal.等国际知名期刊发表论文十余篇。