当前位置: 首页  科学研究  学术活动

现代分析及其应用数学研究所系列学术报告

来源:系统管理员 发布时间:2024-10-08

报告题目1:Theory of stoichiometric intraguild predation: algae, ciliate, and Daphnia

报告人:原三领教授,上海理工大学

报告时间:20241011日(周五)8:30-9:20

报告地点20-200

报告摘要:Consumers respond differently to external nutrient changes than producers, resulting in a mismatch in elemental composition between them and potentially having a significant impact on their interactions. To explore the responses of herbivores and omnivores to changes in elemental composition in producers, we develop a novel stoichiometric model with an intraguild predation structure. The model is validated using experimental data, and the results show that our model can well capture the growth dynamics of these three species. Theoretical and numerical analyses reveal that the model exhibits complex dynamics, including chaotic-like oscillations and multiple types of bifurcations, and undergoes long transients and regime shifts. Under moderate light intensity and phosphate concentration, these three species can coexist. However, when the light intensity is high or the phosphate concentration is low, the energy enrichment paradox occurs, leading to the extinction of ciliate and Daphnia. Furthermore, if phosphate is sufficient, the competitive effect of ciliate and Daphnia on algae will be dominant, leading to competitive exclusion. Notably, when the phosphorus-to-carbon ratio of ciliate is in a suitable range, the energy enrichment paradox can be avoided, thus promoting the coexistence of species. These findings contribute to a deeper understanding of species coexistence and biodiversity.

报告人简介:原三领,上海理工大学教授,博士生导师,中国数学会生物数学专业委员会副主任。研究方向为:微分方程与动力系统、生物数学。曾先后主持多项国家自然科学基金面上项目和上海市项目的研究工作。研究内容涉及微分方程与动力系统、种群动力学、流行病动力学、海洋生态学以及生物化学工程等诸多领域,具有多学科交叉的特点。曾多次受邀到国内和国际多所高校进行合作研究和学术交流。已在SIAM Journal on Applied Mathematics、Journal of Mathematical Biology、Journal of Differential Equations、Journal of Nonlinear Sciences、Bulletin of Mathematical Biology等国内外重要学术刊物上发表SCI论文150余篇。


报告题目2:具有阶段逗留时间分布及种内竞争的阶段结构模型

报告人:楼一钧教授,香港理工大学

报告时间:20241011日(周五)9:20-10:10

报告地点20-200

报告摘要:阶段结构模型是通过将具有相似统计特征的个体归为一类,从而用简单数学模型描述种群密度的动态变化。本报告将介绍具有阶段逗留时间分布的阶段结构模型,同时展示逗留时间服从狄拉克分布和伽马分布情形下的约化模型。特别地,将汇报本人及合作者的一些近期研究进展,包括考虑种内竞争,具有时变的逗留时间分布,以及个体空间扩散等因素时的模型建立及分析。

报告人简介:楼一均,2010年毕业于加拿大纽芬兰纪念大学,获博士学位。现任香港理工大学副教授。同时担任香港理工大学科技应用数学理学硕士项目课程主任(Program Leader of Master of Science in Applied Mathematics for Science and Technology)。主要研究方向为应用动力系统及其在复杂生物系统的应用。论文发表在SIAM Journal of Applied MathematicsIEEE Transactions on Automatic ControlJournal of Nonlinear ScienceNonlinearityJournal of Differential EquationsJournal of Mathematical BiologyChaos, Bulletin of Mathematical BiologyJournal of Theoretical BiologyEcological Complexity等主流应用数学以及理论生态学杂志。近年来对具有季节驱动或年龄结构的复杂系统以及复杂网络上的疾病传播动力学感兴趣。现任Infectious Disease Modelling杂志Associated Editor,以及Advances in Continuous and Discrete Models等期刊编委。近期研究受国家自然科学基金和香港特别行政区大学教育资助委员会资助。

 

报告题目3:Existence, uniqueness and stability of forced waves for asymptotical KPP equations with the nonlocal dispersal in a shifting habitat

报告人:余志先教授,上海师范大学

报告时间:20241011日(周五)10:10-11:00

报告地点20-200

报告摘要:In this report, we mainly focus on the existence, uniqueness and stability of forced waves for the asymptotical KPP equation with the nonlocal dispersal in a shifting habitat. Firstly, we adopt the monotone semi-flow technique to obtain the existence of forced waves with the wave speed $c$, which is a given speed of habitat edge movement. Next, we obtain the uniqueness of forced waves via the sliding method. Lastly, by using the monotone semi-flow technique in conjunction with the upper-lower solutions, we first obtain the solution of initial problem uniformly converges to the forced wave, and further give the global exponential stability of the forced wave.

This is a joint work with Yanling Meng(孟艳玲) and Liang Zhang(张亮).

报告人简介:余志先,上海师范大学教授,博士生导师,曾访问法国波尔多第二大学、加拿大纽芬兰纪念大学、加拿大麦吉尔大学。一直从事非线性系统的空间传播动力学及应用的研究,已在NonlinearityJ. Differential EquationsEuropean J. Appl. Math.Proc. Amer. Math. Soc.Discrete Contin. Dyn. Syst. AZ. Angew. Math. Phy.(ZAMP)等国内外期刊发表SCI论文50余篇,1ESI高被引论文。主持了国家自然科学基金面上项目、国家自然科学基金青年项目、上海市自然科学基金面上项目、上海市创新项目及上海市高校青年教师培养计划项目等,参与2020年教委重点课程建设项目。曾获上海理工大学志远学者称号,曾获上海理工大学教学比赛一等奖,2021年获上海师范大学第四届我心中的好老师称号,2023年获上海师范大学教学成果奖一等奖。

邀请人:非线性分析与PDE团队