报告题目:Bifurcations and global dynamics of a predator-prey mite model of Leslie type
报告人:徐衍聪教授,中国计量大学
报告时间:2024年4月29日(周一)11:30-12:30
报告地点:20-404(第一会议室)
报告摘要:In this paper, we study a predator–prey mite model of Leslie type with generalized Holling IV functional response. The model is shown to have very rich bifurcation dynamics, including subcritical and supercritical Hopf bifurcations, degenerate Hopf bifurcation, focus type and cusp-type degenerate Bogdanov–Takens bifurcations of codimension 3, originating from a nilpotent focus or cusp of codimension 3 that acts as the organizing center for the bifurcation set. Coexistence of multiple steady states, multiple limit cycles, and homoclinic cycles is also found. Interestingly, the coexistence of two limit cycles is guaranteed by investigating generalized Hopf bifurcation and degenerate homoclinic bifurcation, and we also find that two generalized Hopf bifurcation points are connected by a saddle-node bifurcation curve of limit cycles, which indicates the existence of global regime for two limit cycles and the nonexistence of isola of limit cycle. A Joint work with Yue Yang, Libin Rong and Shigui Ruan.
报告人简介:徐衍聪,中国计量大学理学院教授,博士生导师,华东师范大学应用数学专业博士,浙江大学博士后,美国工业与应用数学学会会员,美国数学会会员,浙江省数理医学会理事,浙江省ZSMM生物医学数学专业委员会主任,曾入选杭州市优秀教师,校优秀中青年支持计划,校教学十佳,校十佳班主任等。先后访问美国布朗大学、德国不莱梅大学、日本京都大学、加拿大约克大学等高校。主持国家自然科学基金面上项目、天元基金、日本全球卓越中心(GCOE)项目、博士后基金、浙江省自然科学基金等。主要从事动力系统分支理论及应用研究。