当前位置: 首页  科学研究  学术活动

现代分析及其应用数学研究所学术报告(Vicentiu Radulescu,University of Craiova)

来源:系统管理员 发布时间:2024-04-17

报告题目:The Ambrosetti-Prodi problem for Robin (p,q)-equations

报告人Vicentiu Radulescu, University of Craiova

报告时间:2024年4月18日(周四8:30

报告地点20-200

报告摘要:I shall report on some results in a recent joint paper with Nikolaos Papageorgiou (National Technical University, Athens) and Jian Zhang (Hunan University of Technology and Business). The classical Ambrosetti-Prodi problem considers perturbations of the linear Dirichlet Laplace operator by a nonlinear reaction whose derivative jumps over the principal eigenvalue of the operator. In this talk, we develop a related analysis for parametric problems driven by the nonlinear Robin (p,q)-Laplace operator. Under hypotheses that cover both the (p-1)-linear and the (p-1)-superlinear case, we prove an optimal existence and  multiplicity property of solutions, as well as a non-existence result.

报告人简介:Vicentiu D.Radulescu,克拉约瓦大学教授、罗马尼亚国家科学院终身教授。博士毕业于巴黎六大,师从世界著名偏微分方程专家Haim Brezis教授。Radulescu教授主要从事非线性椭圆方程、带退化和奇异线性的数学物理方程、非齐次微分算子的谱分析及其在电流变液中的应用等工作,尤其在非线性分析和非线性椭圆型偏微分方程方面有着很深的学术造诣和威望,出版专著10余部,在国际著名期刊 J. Math. Pures Appl.、Transactions Amer. Math. Soc.、Comm. Partial Differential Equations、J. Differ. Equ.、Nonlinearity、Ann. Scuola Norm. Sup. Pisa, Cl. Sci.、Israel J. Math.、Calc. Var. Partial Differ. Equ.等发表高水平和高影响的学术论文300余篇,多次主持罗马尼亚国家科学研究委员会科研项目。