离散数学研究所学术报告(方春秋,东莞理工学院)
来源:系统管理员 发布时间:2024-01-18
报告题目:On local Tur\'an density problems of hypergraphs
报告人:方春秋,东莞理工学院
报告时间:2024年1月19日(周五)10:00-11:00
报告地点:21-411
报告摘要:For integers q \geq p \geq r \geq 2, we say that an r-uniform hypergraph H has property (q, p), if for any q-vertex subset Q of V(H), there exists a p-vertex subset P of Q spanning a clique in H. Let T_{r}(n, q, p)=\min\{e(H): H \subset \binom{[n]}{r}, H has property (q,p)\}. The local Tur\'an density about property (q, p) in r-uniform hypergraphs is defined as t_{r}(q, p) = \lim_{n \to \infty} T_{r}(n, q, p)/ \binom{n}{r}. Frankl, Huang and R\odl [J. Comb. Theory, Ser. A, 177 (2021)] showed that \lim_{p \to \infty} t_{r}(ap+1, p+1) = \frac{1}{a^{r-1}} for positive integer a and t_{3}(2p+1, p+1)=\frac{1}{4} for all p \geq 3 and asked the question that determining the value of \lim_{p \to \infty} t_{r}(\gamma p+1, p+1), where \gamma \geq 1 is a real number. In this talk, I will present some recent results on this problem. Joint work with Guorong Gao, Jie Ma and Ge Song.
报告人简介:方春秋,东莞理工学院讲师。2020年获清华大学理学博士学位,博士期间曾于匈牙利Alfréd Rény研究所公派访问一年,中国科学技术大学博士后。主要从事Anti-Ramsey, Turan数等极值组合问题的研究。目前在 J. Combin. Des. 、 Electron. J. Combin. 等杂志发表学术论文7篇,主持国家自然科学基金青年基金一项。
邀请人:徐荣兴