动力系统与非线性分析研究所学术报告(杨波,宁波大学;刘男,南京信息工程大学)
来源:系统管理员 发布时间:2024-01-09
报告题目1:Wave Patterns in Higher-Order KP-I Lumps
报告人:杨波,宁波大学
报告时间:2024年1月10日(周三)14:00-15:00
报告地点:21-417;腾讯会议:535-886-7378
报告摘要:Wave Patterns in higher-order lumps of the Kadomtsev–Petviashvili I equation at large time is analytically studied. For a broad class of these higher-order lumps, we show that two types of solution patterns appear at large time. The first type of patterns comprises fundamental lumps arranged in triangular shapes, which are described analytically by root structures of the Yablonskii–Vorob’ev (Y-V) polynomials. The second type of patterns comprise fundamental lumps arranged in non-triangular shapes in the outer region, which are described analytically by nonzero-root structures of the Wronskian–Hermit polynomials, together with possible fundamental lumps arranged in triangular shapes in the inner region, which are described analytically by root structures of the Y-V polynomials. Our predicted patterns at large time are compared to true solutions, and excellent agreement is observed.
报告人简介:杨波,宁波大学数学与统计学院副教授。2018年博士毕业于华东师范大学,2018年至2021年在美国佛蒙特大学数学系从事博士后研究工作。目前主要从事可积系统中的非线性波理论和应用方面的研究。近年来主持国家自然科学基金青年项目一项,相关研究成果发表在《J. Nonlinear. Sci》、《IMA J. Appl. Math》、《Physica D》等杂志。
报告题目2:Painleve-type asymptotics for some nonlinear integrable PDEs
报告人:刘男,南京信息工程大学
报告时间:2024年1月10日(周三)15:00-16:00
报告地点:21-417;腾讯会议:535-886-7378
报告摘要:In this talk, I will first give an introduction of the progress on asymptotic theory in integrable systems. Then the Painleve-type asymptotics of solutions for the extended modified Korteweg-de Vries equation and coupled Sasa-Satsuma equation on the line in the case of initial conditions that belong to Schwarz space will be discussed.
报告人简介:刘男,南京信息工程大学副教授,近年来主要从事可积系统理论方法研究,包括反散射理论,可积系统解的长时间渐近分析,先后主持国家、江苏省自然科学基金青年项目和江苏省高校自然科学研究面上项目,中国博士后科学基金特助和面上项目等研究课题,相关研究结果发表在JDE, Stud. Appl. Math, Phys. D, Sci. China-Math, Proceedings AMS等期刊。