现代分析及其应用数学研究所学术报告(戴嵩副教授,天津大学)
来源:系统管理员 发布时间:2023-12-11
报告题目:Rigidity of the Delaunay triangulations of the plane
报告人:戴嵩副教授,天津大学
报告时间:2023年12月13日(周三)14:00-16:00
报告地点:腾讯会议:316-487-148
报告摘要:In this talk, we will show the rigidity of the Delaunay triangulated plane under Luo’s discrete conformality (also called the vertex scaling). More precisely, let T=(V,E,F) be a topological triangulation of the plane. Let l,l’ be two PL-metrics of T such that the induced distance structures are isometric to the plane. Suppose l and l’ are discrete conformal in the sense that there exists a function u on V such that l’_{ij}=e^{u_i+u_j}l_{ij}. We further assume l satisfies the Delaunay condition, l’ satisfies the uniformly Delaunay condition and both l and l’ satisfy the uniformly nondegenerate condition. Then l and l’ differ by a constant factor. This a joint work with Tianqi Wu.
报告人简介:戴嵩,本科毕业于南开大学,博士毕业于北京大学,现为天津大学副教授。主要研究方向为几何分析。代表作发表在JDG、Proc. LMS、Math Ann.、PMJ等期刊上。
邀请人:徐甜