现代分析及其应用数学研究所学术报告 (訾瑞昭副教授,华中师范大学)
来源:系统管理员 发布时间:2023-06-02
报告题目:Asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system
报告人:訾瑞昭副教授,华中师范大学
报告时间:2023年6月3日9:30
报告地点:20-306
报告摘要:We prove the asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system, when the perturbations are in Gevrey-, (
) and of size smaller than the resistivity coefficient
. More precisely, we prove(1) the
-amplification of the perturbed vorticity, namely, the size of the vorticity grows from
to
;(2) the polynomial decay of the perturbed current density, namely,
;(3) and the damping for the perturbed velocity and magnetic field, namely,
We also confirm that the strong uniform magnetic field stabilizes the Euler-MHD system near Couette flow. This is based on a joint work with Prof. Weiren Zhao.
报告人简介:訾瑞昭,华中师范大学数学与统计学学院副教授,博士生导师,曾获聘华中师范大学“桂子青年学者”。先后主持国家自然科学基金青年项目及面上项目各一项,2022年获得国家自然科学基金优秀青年基金资助。主要从事流体力学中偏微分方程解的适定性与稳定性的研究,与合作者一起在可压缩Navier-Stokes方程解的衰减率及强耦合Oldroyd-B模型解的适定性等方面做出了系列工作。在Math. Ann., Arch. Ration. Mech. Anal., J. Funct. Anal., Ann. Inst. H. Poincaré C Anal. Non Linéaire, SIAM J. Math. Anal.等期刊上发表论文近30篇。