当前位置: 首页  科学研究  学术活动

现代分析及其应用数学研究所学术报告 (訾瑞昭副教授,华中师范大学)

来源:系统管理员 发布时间:2023-06-02

报告题目Asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system

报告人訾瑞昭副教授华中师范大学

报告时间202363930

报告地点20-306

报告摘要We prove the asymptotic stability of Couette flow in a strong uniform magnetic field for the Euler-MHD system, when the perturbations are in Gevrey-, () and of size smaller than the resistivity coefficient . More precisely, we prove(1) the -amplification of the perturbed vorticity, namely, the size of the vorticity grows from  to ;(2) the polynomial decay of the perturbed current density, namely,

(3) and the damping for the perturbed velocity and magnetic field, namely,


We also confirm that the strong uniform magnetic field stabilizes the Euler-MHD system near Couette flow. This is based on a joint work with Prof. Weiren Zhao.



报告人简介訾瑞昭,华中师范大学数学与统计学学院副教授,博士生导师,曾获聘华中师范大学“桂子青年学者”。先后主持国家自然科学基金青年项目及面上项目各一项,2022年获得国家自然科学基金优秀青年基金资助。主要从事流体力学中偏微分方程解的适定性与稳定性的研究,与合作者一起在可压缩Navier-Stokes方程解的衰减率及强耦合Oldroyd-B模型解的适定性等方面做出了系列工作。在Math. Ann., Arch. Ration. Mech. Anal., J. Funct. Anal., Ann. Inst. H. Poincaré C Anal. Non Linéaire, SIAM J. Math. Anal.等期刊上发表论文近30篇。