现代分析及其应用研究所系列学术报告(四)(秦国权博士,云南大学)
来源:系统管理员 发布时间:2023-04-28
报告题目:Camassa-Holm型方程尖峰孤立波解的轨道稳定性
报告人:秦国权博士,云南大学
报告时间:2023年4月29日15:30-17:00
报告地点:20幢308
报告摘要:In this paper, we investigate the orbital stability issue of a generalized higher-order Camassa-Holm (HOCH) equation, which is an higher-order extension of the quadratic CH equation. Firstly, we show that the HOCH equation admits a global weak peakon solution by paring it with some smooth test function. Secondly, with the help of two conserved quantities and the non-sgn-changing condition, we prove the orbital stability of this peakon solution in the energy space in the sense that its shape remains approximately the same for all times. Our results enrich the research of the orbital stability for the CH-type equations and are useful to better understand the impact of higher-order nonlinearities on the dispersion dynamics. This is a joint work with Zhenya Yan, Boling Guo。
报告人简介:秦国权,云南大学青年教师。2021年于中国工程物理研究院获得理学博士学位,师从郭柏灵;同年进入中国科学院数学研究所从事博士后研究工作;2023年入职云南大学数学与统计学院。研究方向偏微分方程: Camassa-Holm型方程。
邀请人:非线性分析与PDE团队