现代分析及其应用研究所系列学术报告(一)(王忠副教授,佛山科学技术学院)
来源:系统管理员 发布时间:2023-04-28
报告题目:On properties of multi-solitons for the Benjamin-Ono equations
报告人:王忠副教授,佛山科学技术学院
报告时间:2023年4月29日8:30-10:00
报告地点:20幢308
报告摘要:In this talk we will present our recent results of existence, uniqueness and stability of multi-solitons for the following generalized Benjamin Ono (gBO) equations
We constructed its strongly interacting -solitons and showed its uniqueness for
and
. Compare to logarithmic relative distance of each solitons for the gKdV and gNLS equations, the relative distance of each solitons of gBO is
.We will also consider the stability of
-solitons for the completely integrable BO equation. It is more likely a two dimensional integrable system, the recursion operator of which is implicit. By employing some IST, we finished the spectral anlysis of the recursion operators and second variation operator of the Lyapunov functional of
-solitons. Our approach in the spectral analysis consists in an invariant for the multi-solitons and new operator identities motivated by the bi-Hamiltonian structure of the BO equation. This is a joint work with Yang Lan at Yau Center of Tsinghua University.
报告人简介:王忠,佛山科学技术学院数学系副教授,2016年毕业于中山大学获理学博士学位,师从崔尚斌教授,后作为访问学者访问法国巴黎综合理工学院Yvan Martel 和图卢兹第三大学一年。主要研究非线性色散方程多孤立子解的稳定性和渐近稳定性问题。在CVPDE, Nonlinearity 等期刊发表过学术论文。主持青年基金和广东省基金项目两项。
邀请人:非线性分析与PDE团队