动力系统与非线性分析研究所学术报告(黄健沨副教授,暨南大学)
来源:系统管理员 发布时间:2023-03-27
报告题目: On the study of limit cycles in piecewise smooth generalized Abel equations via a new Chebyshev criterion
报告人:黄健渢副教授, 暨南大学
报告时间:2023年3月31日(周五) 15:00-16:00
报告方式:腾讯会议,会议号554-710-146
报告摘要: In this topic, we first present our study of the limit cycle bifurcation of a kind of generalized Abel equation, where the coefficients are piecewise trigonometrical polynomials of degree m with two zones separated by a vertical straight line. We focus on the maximum number of positive and negative limit cycles (i.e., positive and negative isolated periodic solutions) that the equation can have, and the problem that how this maximum number, denoted by H(m), is affected by the location of the separation line. The main tools are the higher order analysis using the theories of Melnikov functions and a new Chebyshev criterion that we developed recently. In the second part we also show some other examples of planar polynomial differential systems which can be study applying this Chebyshev criterion.
报告人简介:黄健沨,暨南大学数学系副教授,理学博士,硕士生导师。主要从事微分方程定性理论及应用的研究。在《SIAM Journal on Applied Dynamical Systems》、《Journal of Differential Equations》、《Discrete and Continuous Dynamical Systems - Series A》等国际主流SCI期刊上发表论文二十余篇。主持并完成国家自然科学青年基金、中国博士后科学基金面上一等资助;主持在研国家自然科学基金面上项目1项,广东省自然科学基金面上项目1项等。获2019年广东省自然科学技术奖二等奖(第三排名)。
邀请人:戴燕飞